Some Polynomial Sequence Relations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some recurrence relations for binary sequence matrices

This note compares and contrasts some properties of binary sequences with matrices and associated recurrence relations in order to stimulate some enrichment exercises and pattern puzzles.

متن کامل

extensions of some polynomial inequalities to the polar derivative

توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی

15 صفحه اول

Noncommutative Polynomial Relations

Terminology: We’ll say that two polynomials p, q are congruent, and write p ≡ q, if their equality is a consequence of our given relation. To be consistent, we also write the given relation as f ≡ 0. We must explain the consequences of f ≡ 0 specifically. They are that if u, v are any polynomials, then the product ufv is congruent to zero, as is a finite sum of such products. That is all. For i...

متن کامل

Flow Polynomial of some Dendrimers

Suppose G is an nvertex and medge simple graph with edge set E(G). An integervalued function f: E(G) → Z is called a flow. Tutte was introduced the flow polynomial F(G, λ) as a polynomial in an indeterminate λ with integer coefficients by F(G,λ) In this paper the Flow polynomial of some dendrimers are computed.

متن کامل

Finding Relations in Polynomial Time

Given a set of m observations on n variables, an 0(mn) algorithm is proposed to find a basis of all affine relations between these variables satisfied by the observations. On a 25 variables example, this new algorithm is 130 000 times faster than the "all subsets" option for linear regression of the SAS package which is a non polynomial alternative. Extension to the cases where squares, ratios,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2019

ISSN: 2227-7390

DOI: 10.3390/math7080750